A Framework for Comparison of Methods for Solving Complementarity Problems That Arise in Multibody Dynamics
نویسنده
چکیده
The simulation of multibody dynamics with physical constraints has been significant in the areas of science, engineering, computer graphics and robotics. There is a growing need for fast, accurate simulation tools in robotics applications such as manipulation planning and model-predictive control. However, the underlying dynamics model of multibody systems with contacts and friction is fundamentally nonsmooth and nonlinear, due to the intermittent unilateral contact and the stickslip transitions. The model is most commonly written as a differential complementarity problem, for which there is no closed-form solution. Therefore, one must use numerical methods to approximate the solution. This is commonly done by time discretization of the differential complementarity problem, which results in a sequence of algebraic complementarity problems. These problems also have no closed-form solution and are difficult to solve. This thesis contributes to the field of simulation of multibody dynamics systems in three primary areas: the development of new parallel solution algorithms, the development of methods to compare physical system behavior to that of simulated systems, and the development of a benchmark framework for the fair comparision of simulation algorithms. Among the simulation software packages in popular use today, there is no entirely satisfactory algorithm to compute the contact impacts with friction, and unbiased comparison and physical validation remain rare. Users with different application purposes are confused about which method to use based on the trade-off between accuracy and efficiency. Thus, we present the benchmark problems for multibody dynamics (BPMD) framework, with novel error metrics that evaluate not only the numerical error, but also the physical constraint violations to facilitate a fair comparison of common simulation models and solvers. The statistics and analytical metrics provide the robotics community, and others with a comprehensive tool to review the accuracy of possible simulation methods. To further validate the applicability of simulation methods, we conduct simulations of physical experiments and develop two analysis tools to tune model parameters and quantify errors.
منابع مشابه
Comparison of Multibody Dynamics Solver Performance: Synthetic versus Realistic Data
In the area of robotics simulation, multibody dynamics plays an important role in designing and controlling robots, especially when the robot contacts the environment. Contacts give rise to non-penetration and friction constraints, which are nonsmooth and nonlinear. One way to simulate such systems is through the use of a discrete-time multibody dynamics model in the form of a nonlinear complem...
متن کاملA Framework for Problem Standardization and Algorithm Comparison in Multibody System
The underlying dynamic model of multibody systems takes the form of a differential Complementarity Problem (dCP), which is nonsmooth and thus challenging to integrate. The dCP is typically solved by discretizing it in time, thus converting the simulation problem into the problem of solving a sequence of complementarity problems (CPs). Because the CPs are difficult to solve, many modelling optio...
متن کاملA numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method
In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...
متن کاملLarge-Scale Parallel Multibody Dynamics with Frictional Contact on the Graphical Processing Unit
In the context of simulating the frictional contact dynamics of large systems of rigid bodies, this paper reviews a novel method for solving large cone complementarity problems by means of a fixed-point iteration algorithm. The method is an extension of the Gauss-Seidel and Gauss-Jacobi methods with overrelaxation for symmetric convex linear complementarity problems. Convergent under fairly sta...
متن کاملModeling Intermittent Contact for Flexible Multibody Systems
This paper consists of two parts. The first part presents a complementarity based recursive scheme to model intermittent contact for flexible multibody systems. A recursive divide and conquer framework is used to explicitly impose the bilateral constraints in the entire system. The presented approach is an extension of the hybrid scheme for rigid multibody systems to allow for small deformation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016